Go QML Contest

UPDATE: The contest result is out.

A couple of weeks ago a probe message was sent to a few places questioning whether there would be enough interest on a development contest involving Go QML applications. Since the result was quite positive, we’re moving the idea forward!

OpenGL Gopher

This blog post provides further information on how to participate. If you have any other questions not covered here, or want technical help with your application, please get in touch via the mailing list or twitter.

Continue reading “Go QML Contest”

Taking the Gopher for a spin

As originally shared on Google+, and as a follow up of the previous post covering OpenGL on Go QML, a new screencast was published to demonstrate the latest features introduced around OpenGL support in Go QML:


QML components with Go and OpenGL

As recently announced, my latest endeavor at Canonical is to enable graphical client-side development with the Go language via a new qml Go package that integrates the language with Qt’s QML framework.

The QML framework solves the problem of designing graphic applications via a language that offers a convenient mix of declarative and procedural features. As a very simple example, if the following QML content is loaded by itself, it will draw a square centralized inside a window:

Continue reading “QML components with Go and OpenGL”

An AVR assembly test suite

About a year ago I ordered a pack of 10 atmega328p processors from China to play with. They took a while to get here, and it took even longer for me to get back to them, but a few days ago the motivation to start doing something finally appeared.

I’ve never actually played with AVRs before, and felt a bit like I was jumping a step in my electronics enthusiast progress by not diving into its architecture a bit more deeply. Also, despite the obvious advantages of ARM-based chips these days, the platform is still interesting in some perspectives, such as its widespread availability, low price in small quantities, and the ability to plug them in a breadboard and do things without pretty much any circuitry.

To get acquainted with the architecture and to depart from things I work on more frequently, the project is so far taking the shape of an assembly library of functionality relevant for developing small projects, built mainly around binutils for the AVR. I did end up cheating a bit and compiling the assembly code via avr-gcc, just to get the __do_copy_data initialization routine injected, so that I don’t have to pull up the .data section from program memory into RAM manually.

Continue reading “An AVR assembly test suite”

Twik: a tiny language for Go

As part of one of the projects we’ve been pushing at Canonical, I spent a few days researching about the possibility of extending a compiled Go application with a tiny language that would allow expressing simple procedural logic in a controlled environment. Although we’re not yet sure of the direction we’ll take, the result of this short experiment is being released as the twik language for open fiddling.

Continue reading “Twik: a tiny language for Go”

Reference strepr implementation

In an effort to polish the recently released draft of the strepr v1 specification, I’ve spent the last couple of days in a Go reference implementation.

The implemented algorithm is relatively simple, efficient, and consumes a conservative amount of memory. The aspect of it that deserved the most attention is the efficient encoding of a float number when it carries an integer value, as covered before. The provided tests are a useful reference as well.

Continue reading “Reference strepr implementation”

strepr v1 (draft2)

Note: This is a candidate version of the specification. This note will be removed once v1 is closed, and any changes will be described at the end. Please get in touch if you’re implementing it.



This specification defines strepr, a stable representation that enables computing hashes and cryptographic signatures out of a defined set of composite values that is commonly found across a number of languages and applications.

Although the defined representation is a serialization format, it isn’t meant to be used as a traditional one. It may not be seen entirely in memory at once, or written to disk, or sent across the network. Its role is specifically in aiding the generation of hashes and signatures for values that are serialized via other means (JSON, BSON, YAML, HTTP headers or query parameters, configuration files, etc).

Continue reading “strepr v1 (draft2)”